首页师资队伍师资队伍T
唐国栋 Guodong Tang

个人简介


唐国栋,副教授,硕士生导师,生于1980年。2011年获南京大学凝聚态物理博士学位。20117月进入南京理工大学材料科学与工程学院从事教学科研工作。期间赴密苏里大学堪萨斯分校访学。致力于热电转换能源材料的研究工作,在高性能热电材料研究方面取得丰硕成果。目前已在J. Am. Chem. Soc.J. Mater. Chem. A 等国际顶级学术刊物上发表论文50篇,二区以上论文25篇,其中第一作者和通讯作者论文33篇,包括以第一作者或通讯作者在国际顶级期刊J. Am. Chem. Soc发表论文二篇,J. Mater. Chem. A上发表论文一篇。先后主持项目十二项,参与项目二项,共十四项,其中国家级项目四项,省部级项目三项,包括主持国家自然科学基金二项,江苏省自然科学基金面上项目一项,江苏省自然科学基金青年基金一项,中国博士后科学基金特别资助一项,中国博士后科学基金一项,江苏省博士后科学基金一项,南京理工大学自主科研杰优青培育项目一项等,科研启动项目一项,作为第二完成人参与国家自然科学基金面上项目二项,入选江苏省“六大人才高峰”高层次人才培养对象,南京理工大学“卓越计划、紫金之星”培养对象,主编教材一部。

教育背景

博士毕业于南京大学物理学院凝聚态物理专业。

硕士毕业于广西师范大学物理科学与技术学院理论物理专业。

工作履历

2004.09-2008.06,广西师范大学,物理学院,从事功能磁性材料的研究 
2008.09-2011.06
,南京大学, 物理学院,从事热电材料研究
2011.06
至今,  南京理工大学,材料学院,从事热电材料研究

学术/社会兼职

受邀担任NanoscaleIF=7.76, 一区), ACS Applied Materials and InterfacesIF=7.145, 一区), Applied Physics Letters (二区Top) Jounal of Alloys and Compounds (二区Top)Journal of Materials Science (二区Top)Ceramics International(二区top),物理学报等高水平期刊审稿人。现为中国材料学会会员,中国热电研究学会会员,江苏省颗粒学会高级会员。

研究领域/概况

  1. 磁性功能材料的制备和性能研究
  2.  半导体温差发电材料的制备、性能,及相关机理研究
  3.  纳米复合热电材料的性能研究
  4. 纳米材料的磁性与输运性质研究
     

奖励与荣誉

江苏省“六大人才高峰”高层次人才培养对象

南京理工大学年度“科技新锐”

江苏省“双创博士”科技副总

学术成果

代表性论著:

1. Wei Wei, Cheng Chang, Teng Yang, Jizi Liu, Huaichao Tang, Jian Zhang, Yusheng Li, Feng Xu, Zhidong Zhang, Jing-Feng Li, Guodong Tang*, “Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies” Published online, Journal of the American Chemical Society, DOI: 10.1021/jacs.7b11875. 影响因子13.85

2. Qiang Wen, Cheng Chang, Lin Pan, Xiaotong Li, Teng Yang, Huaihong Guo, Zhihe Wang, Jian Zhang, Feng Xu, Zhidong Zhang, Guodong Tang*, “Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation”, Journal of Materials Chemistry A, 5, 13392 (2017).影响因子8.9

Guodong Tang*, Wei Wei, Jian Zhang,Yusheng Li, Xiang Wang, Guizhou Xu, Cheng Chang, Zhihe Wang, Youwei Du, Li-Dong Zhao, “Realizing high figure of merit in phase-separated polycrystalline Sn1-xPbxSe”, Journal of the American Chemical Society, 138, 13647 (2016).影响因子13.85

   近几年内发表的全部论著(*为通讯作者)

1. Wei Wei, Cheng Chang, Teng Yang, Jizi Liu, Huaichao Tang, Jian Zhang, Yusheng Li, Feng Xu, Zhidong Zhang, Jing-Feng Li, Guodong Tang*, “Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies” Published online, Journal of the American Chemical Society, DOI: 10.1021/jacs.7b11875.

2. Yaru Gong, Cheng Chang, Wei Wei, Jiang Liu, Wenjie Xiong, Shuang Cai, Di Li, Jian Zhang,  Guodong Tang*, “Extremely Low Thermal Conductivity and enhanced thermoelectric Performance of Polycrystalline SnSe by Cu doping” Scripta Materialia, Accepted.

3. Qiang Wen, Huichen Zhang, Feng Xu, Lizhe Liu, Zhihe Wang, Guodong Tang*, “Enhanced thermoelectric performance of BiCuSeO via dual-doping in both Bi and Cu sites”, Journal of Alloys and Compounds, 711, 434 (2017).

4. Qiang Wen, Cheng Chang, Lin Pan, Xiaotong Li, Teng Yang, Huaihong Guo, Zhihe Wang, Jian Zhang, Feng Xu, Zhidong Zhang, Guodong Tang*, “Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation”, Journal of Materials Chemistry A, 5, 13392 (2017).

5.  Guodong Tang*, Qiang Wen, Teng Yang, Yang Cao, Wei Wei, Zhihe Wang, Zhidong Zhang, Yusheng Li, Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe, RSC Advances, 7, 8258 (2017).

6.  Guodong Tang*, Wei Wei, Jian Zhang,Yusheng Li, Xiang Wang, Guizhou Xu, Cheng Chang, Zhihe Wang, Youwei Du, Li-Dong Zhao, “Realizing high figure of merit in phase-separated polycrystalline Sn1-xPbxSe”, Journal of the American Chemical Society, 138, 13647 (2016).

7.  Wenchao Yang, Qiang Wen, Wei Wei, Dewei Zhang, Zhihe Wang, Guodong Tang*, “Optimization of the spin entropy by incorporating magnetic ion in a misfit-layered calcium cobaltite”, Ceramics International, 42, 9744 (2016).

8.  Wenchao Yang, Haoji Qian, Jinyu Gan, Wei Wei, Zhihe Wang, Guodong Tang*, “Effects of Lu and Ni substitution on thermoelectric properties of Ca3Co4O9+δ”, Journal of Electronic Materials, 45, 4171 (2016).

9.  G. D. Tang*, W. C. Yang,  Y. Y. Jiang, Z. C. Wu, Z. H. Wang, “Large increase in the spin entropy of thermoelectric Ca3Co4O9+d induced by Ni and Ce co-doping”, Journal of materials Science, 50, 1746 (2015).

10.  G. D. Tang*, W. C. Yang, Y. He, Z. H. Wang, “Enhanced thermoelectric properties of Ca3Co4O9+d by Ni,Ce co-doping”, Ceramics International, 41, 7115 (2015).

11.  G. D. Tang*, W. C. Yang, J. F. Wen, Z. C. Wu, C. Fan, Z. H. Wang, “Ultralow thermal conductivity and thermoelectric properties of carbon nanotubes doped Ca3Co4O9+δ”, Ceramics International, 41, 961 (2015).

12.  G. D. Tang*, W. C. Yang, F. Xu, Y. He, “Synthesis and Thermoelectric Properties of In and Pr Double-filled Skutterudites InxPryCo4Sb12, Journal of Electronic Materials, 43, 435 (2014).

13.  G. D. Tang*, F. Xu, D. W. Zhang, Z. H. Wang, “Improving the spin entropy by suppressing Co4+ concentration in thermoelectric Ca3Co4O9+d”, Ceramics International 39, 1341 (2013).

14.  G. D. Tang*, D. W. Zhang, G. Chen, F. Xu, Z. H. Wang, “High temperature thermoelectric and magnetic properties of InxNdyCo4Sb12 skutterudites”, Physica B 408, 79 (2013).

15.  G. D. Tang*, X. Q. Shi, C. Huo, Z. H. Wang, “Room temperature ferromagnetism in hydrothermally grown Ni and Cu co-doped ZnO nanorods”, Ceramics International, 39, 4825 (2013).

16.  G. D. Tang*, F. Xu, Y. He, L. Y. Wang, L. Qiu, Z. H. Wang, “Evidence for giant spin entropy contribution in thermoelectric Ca3Co4O9”, Physica status solidi B, 250, 1327 (2013).

17.  G. D. Tang*, Y. He, F. Xu, Q. M. Zhang, “Experimental Evidence for Jahn-Teller transition in a Fe(II)Fe(III) Bimetallic Oxalate”, Acta Physica Polonica A, 123, 118 (2013).

18.  G. D. Tang*, D. W. Zhang, G. Chen, F. Xu, Z. H. Wang, “Thermoelectric properties in double-filled skutterudites InxNdyCo4Sb12”, Solid state communications 152, 2193 (2012).

19.  G. D. Tang, H. H. Guo, T. Yang, D. W. Zhang, X. N. Xu, L. Y. Wang, Z. H. Wang, H. H. Wen, Z. D. Zhang, Y. W. Du, “Anisotropy thermopower and magneto- thermopower of Ca3Co4O9+d single crystals”, Applied Physics Letters 98, 202109 (2011).

20.  G. D. Tang, Z. H. Wang, X. N. Xu, Y. He, L. Qiu, Y. W. Du, “Low Thermal Conductivity and Enhanced Thermoelectric Performance in In and Lu Double-Filled CoSb3 Skutterudite”, Journal of Electronic Materials, 40, 611 (2011).

21.  G. D. Tang, C. P. Tang, X. N. Xu, Y. He, L. Qiu, L. Y. Lv, Z. H. Wang, Y. W. Du, “Electrical and Thermal Properties of Ca3-xGdxCo4O9+d System”, Journal of Electronic Materials, 40, 504 (2011).

22.  G. D. Tang, T. Yang, X. N. Xu, C. Tang, L. Qiu, Z. D. Zhang, L. Lv, Z. H. Wang, Youwei Du, “Enhancement of the spin entropy in NaxCo2O4 by Ni doping”, Applied Physics Letters 97, 032108 (2010).

23.  G. D. Tang, X. N. Xu, C. P. Tang, Z. H.Wang, Y. He, L. Qiu, L. Y. Lv, L. Xing, Y. W. Du, “The spin-entropy enhancement induced by Ce doping in Ca3Co4O9+d”, Europhysics Letters 91, 17002 (2010).

24.  G. D. Tang, Z. H. Wang, X. N. Xu, L. Qiu, Y. W. Du, “Evidence of spin-density-wave transition and enhanced thermoelectric properties in Ca3−xCexCo4O9+d”, Journal of Applied Physics 107, 053715 (2010).

25.  G. D. Tang, X. N. Xu, C. P. Tang, L. Qiu, L. Y. Lv, Z. H. Wang, Y. W. Du, “The spin entropy suppression induced by Fe3+ in NaCo2O4”, Journal of Applied Physics 107, 093707 (2010).

26.  G. D. Tang, C. Tang, X. N. Xu, Y. He, L. Qiu, L. Lv, Z. H. Wang, Y. W. Du, “Lu-induced spin entropy enhancement in Ca3Co4O9+d system”, Solid State Communications 150, 1706 (2010).

27.  G. D. Tang, Z. H. Wang, X. N. Xu, L. Qiu, L. Xing, Y. W. Du, “Thermoelectric properties of Ca3Co4O9+d with Lu substitution”, Journal of Materials Science 45, 3969 (2010).

28. G. D. Tang, Y. He, F. P. Liang, S. Z. Li, Y. J. Huang, “Multiple magnetic Pole Reversals in Molecular-based Mixed Valency Ferrimagnet {[N(n-C4H9)4][FeFe(C2O4)3]}n”, Physica B 392, 337 (2007).

29. G. D. Tang, Y. He, “Answer to the Comment on ‘Multiple magnetic-pole reversals in the molecular-based mixed-valency ferrimagnet {[N(n-C4H9)4][FeFe(C2O4)3]}¥’by G. Tang et al”, Physica B 399, 79 (2007).

30 Lin, Q,(#)Lei, CLG. D. Tang *Zhang, QMHe, YSpin-glass behavior and magnetic splitting in molecular magnetic materials {[N(n-C4H9)4][MIIFeIII(C2O4)3]}n (M = Co, Mn)Hyperfine Interactions20132013219):95-100

31.  Y. He, G. D. Tang, F. P. Liang, Y. J. Huang, M. Huang, “Mössbauer Investigation of the Thermal Phase Transition in RbMnFe(CN)6”, Journal of Alloys and Compounds 438, 52 (2007).

32.  Y. He, G. D. tang, F. P. Liang, Y. J. Huang, Z. B. Chen, “Mössbauer and Magnetic Studies on a FeIIIMn6III Cluster”, Physica B 393, 143 (2007).

33. D. W. Zhang, X. N. Mi, Q. S. Wu, X. Zhang, G. D. Tang, “Enhancement of the thermopower controlled by spin state in La0.9−xEuxCa0.1CoO3”, Solid State Communications, 201, 49 (2015).

34. D. W. Zhang, Z. H. Wang, G. D. Tang, Q. S. Wu, L. Qiu, Y. W. Du, “Spin entropy enhancement tuned by spin state transition in La0.7-xYxCa0.3CoO3”, Ceramics International, 40, 5365 (2014).

35. X. L. Yang, C. Cui, X. Y. Cui, G. D. Tang,  X. L. Ma, “High-temperature Phase Transition and the Activity of Tobermorite”, J. Wuhan univ. Technol. 04, 15 (2014).

36.  D. W. Zhang, X. N. Mi, Z. H. Wang, G. D. Tang, Q. S. Wu,  “Suppression  of the spin entropy in layered cobalt oxide Ca3Co4O9 by Cu doping”, Ceramics International, 40, 12313 (2014).

37.  D. W. ZhangZ. H. Wang, G. D. Tang, X. B. Xu, X. N. Xu, L. Qiu, D. X. Zhang, Y. W. Du, “Effect of Y-doping on spin entropy in Ca3-xYxCo4O9”, Journal of Applied Physics, 113, 17E113 (2013).

38. G. Chen, G. L. Fang, G. D. Tang, “Photoluminescence and Photocatalytic Properties of BiOCl and Bi24O31Cl10 Nanostructures Synthesized by Electrolytic Corrosion of Metal Bi”, Materials Research Bulletin, 48, 1256 (2013).

39. D. W. Zhang, G. D. Tang, X. B. Xu, L. Qiu, Z. H. Wang, Y. W. Du, “Effects of chemical pressure on ferromagnetism and transport properties in La0.7-XYXCa0.3CoO3”, Modern Physics Letters B 26, 1250211 (2012).

40. L. Xing, L. M. Peng, M. Gu, G. D. Tang,Solvothermal synthesis of lutetium aluminum garnet nanopowders: Determination of the optimum synthesis conditions”, Journal of Alloys and Compounds 491, 599 (2010).

41. Q. Lin, Q. M. Zhang, G. D. Tang, Y. He, X. H. Long, Magnetic and Mossbauer Studies in Molecular-based magnets NBu4MAII[Fe-III(OX)(3)] (M-A=Co, Fe)PROGRESS IN FUNCTIONAL MATERIALS20132013538):215-218

42. Q. Lin, C. L. LeiG. D. Tang, Q. M. Zhang, Y. He, Multiple Magnetic Pole Reversals and Mössbauer Studies inMolecular-based Mixed Valency Ferrimagnet {[N(n-C4H9)4][MIIFeIII(C2O4)3]}n(M=Zn, Fe)Physics Procedia2012201225):375-381

 

43. X. L. Yang, C. ChongG. D. Tang, H. L. Ma, High-temperature phase transition and the activity of tobermoriteJournal of Wuhan University of Technology-Materials Science Edition2014292):298-301